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Abstract: N-Methoxy-N-[bis(methoxycarbonyl)methylene]amine N-oxide and N-methoxy-N-
(methoxycarbonylmethylene)amine N-oxide as electron-deficient activated nitronates, show an
exceptionally high reactivity to the magnesium alkoxides of allylic alcohols. Isoxazolidines or
isoxazolines are formed as cycloadducts, depending upon the substitution pattern of the allylic
alcohols. When the latter C-monosubstituted nitronate is treated with a catalytic amount of boron
trifluoride etherate, the corresponding nitrile oxide is smoothly generated through B-elimination of
methanol. © 1998 Elsevier Science Ltd. All rights reserved.

Alkyl or silyl nitronates derived from primary nitroalkanes are well known to undergo cycloaddition
reactions with activated alkenes to form N-alkoxy- or N-silyloxy-substituted isoxazolidines! which then
undergo spontaneous? or acid catalyzed3 elimination of aicohol (or silanol) to produce isoxazolines. So, with
this cycioaddmon/eummat ion seguence, C-monosu i
nnnnnn 112 Tt 1o alom Lananrn that | e re alantenn Jafiriant nitenmntac ara conver
UAIUCD 1,0 UIPUICD iU 1S aldU ALY 1 tiiat OSUtUiea e1eCtion-aeriCient nitronaies are coinver lCU llllU
nitrile oxides by treatment with a str a Lewis acid.4 Nitronates show a re dctiv1 ty similar to
that of nitrones, and nitrones are ione nft e 1,3-dipoles which have been successfully deve
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asymmetric versions.>-11 Therefore, catalyzed asymmetric nitronate cvcloaddxtlon ould be open if an
appropriate combination of nitronate and Lewis acid is selected.
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Like nitrones, nitronates would be activated by electron-withdrawing substituent(s) on the carbon even
toward electron-poor alkenes,!2 and such activated nitronates should be favored in the study of nitrile oxide
cycloaddition equivalents. However, electron-deficient nitronates are often unstable; half life times are
usually shorter than a few days, and sometimes a few hours.2:13 The typical decomposition pattern is the
irreversible sigmatropic fragmentation producing a carbonyl compound and an oxime.l4 In this work, we
examined the stability of ester-activated nitronates under uncatalyzed and Lewis acid catalyzed conditions
and also tried to find reactive dipolarophiles toward these unstable nitronates.

In the present communication, we would like to report the preparation, isolation, and characterization of
methyl nitronates derived from methyl nitroacetate and dimethyl nitromalonate. The stability test under
uncatalyzea or Lewis acid catalyzed conditions has been investigated. Beside the known decomposition

rever i : a new nitrile oxide generation by f-elimination of
"
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Nitronates are usually in situ generated and directly used in cycloadditions with an excess amount of
dipolarophiles. The most convenient preparation method of nitronates is the O-methylation of "enolizable"
nitroalkanes with diazomethane.2 Thus, two nitronic esters, N-methoxy-N-[bis(methoxycarbonyl)methyl-
enejamine N oxxde (1) and N-mcmoxy-N—(mctnoxycarbonylmetnylene)amme N-oxide (2) were prepared by
W émpér ure 0 Gll’l’le[l’l)’l nitromalonate and metnyl m[roace[a(c

racmantivaly TNiagtar nitranata 1 ~anl ienlatad ae nalarlace enlid 15 e o Falele cnmid danmiimmctbimes $mmb
IL3pLLuvily. LISl 1Huvnaie & Loul 1801a1€Q as CO1011€SsS 50114, UutL a laul_y ld.plu quUulpUbluUll LUU!\
place in chloroform at room temperature. In 2 days in deuteriochloroform,!¢ nitronate 1 was entirely
consumed to give oxime 3 through an irreversible sigmatropic fragmentation (A in Scheme 1). Because of

this instability, cycloadditions of 1 with dipolarophiles were quite limited. Only poor yields of cycloadducts
were produced in uncatalyzed reactions with a variety of dipolarophiles such as norbornene, methyl acrylate,
dimethyl maleate, ethyl vinyl ether, and allyl alcohol (in all cases equivalent amounts were used). However,
the magnesium alkoxide of allyl alcohol 6a (X = MgBr) showed an exceptionally high reactivity to 1
producing dimethyl isoxazolidine-3,3-dicarboxylate 7a in a quantitative yield (Scheme 2). This indicates
that the reaction of nitronates with allylic alcohols can be highly accelerated by the presence of magnesium
ion.17 However, the magnesium alkoxide of crotonyl alcohol 6b (X = MgBr) was much less reactive.
Increasing steric hindrance at the reaction site may be a major reason for the decreased reactivity.
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Scheme 1
The monoester nitronate 2 was also isolable,!8:19 but quite labile. Especially, the major isomer of 2
{(isomer ratio = 1.8:1) underwent a faste decomposition than the other isomer (decomposed in 4 days at room
temperature in deuteriochloreform) 16 than the minor isomer. Consequently, the minor isomer remained was
isolated in a pure form!8 after purification by column chromatography. Decomposition product of the major

isomer was not sigmatropic fragmentation product, but 3,4-bis(methoxycarbonyl)-1,2,5-oxadiazole N-oxide
(5), formed by the dimerization of methoxycarbonylformonitrile oxide (4) generated from 2 by the B3-
elimination of methanol. This will be discussed below. Due to the close resemblance of spectral data,
structures of two geometrical isomers of nitronates 2 could not be distinguished. We temporarily assigned
the more stable (minor) isomer to be the E-isomer E-2 on the basis of the anticipated relative stability: the
less stable (major) Z-isomer Z-2 may have a geometry more favored for both B-elimination and
fragmentation reactions.20
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Although the monoester nitronate 2 showed a higher reactivity than diester nitronate 1 toward ethyl
acrylate, ethyl vinyl ether, allyl and crotyl alcohols, yields of cycloadducts were not satisfactory either. A
mixture of isoxazolidines and!or isoxazolines was produced in less than 20% of combined yields when a
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MgBr) were excellent

eol0isomeric mixtures of
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reaction. In this case also, the magnesium alkoxides o

pi‘(.‘vuuu
di i

,pola..rophﬂPq to produce isoxazolidine 8a (R = H) from allyl alko,Jde (6
isoxazolines 9b,c and 9'b,c (R = Me and Ph) from crotyl and cinnammy]l alko> 6b,c). Elimination of
melhdnol from the initial isoxazolidines depends upon the existence of s ubstltuent at the 4 position. High
rate acceleration in the magnesium ion mediated nitrone cycloadditions to allylic alcohols has been reported

by our group.!?
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1 H MgBr rt 1 7a 100 -
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2 E2Z2=118 H MgBr rt 3 8a 82 -
Me MgBr n 5 9b+9'b 80 6.8:1
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Ph  MgBr n 5  9¢+9'c 80 5.5:1
3isolated yields. ®Based on 'H NMR spectrum
Scheme 2

In the presence of a catalytic amount (10 mol%) of boron trifluoride etherate, decomposition of the
diester nitronate 1 leading to oxime 3 was suppressed. This would be rationalized that coordination of the
Lewis acid catalyst to the nitronate oxygen?! deactivates the irreversible sigmatropic fragmentation because
of the lowered basicity of the coordinated oxygen atom (B in Scheme 1). On the other hand, both isomers of
monoester nitronate 2 underwent a smooth decomposition in the presence of a catalytic amount of boron

PUICY . SO PEPR TR AR N § o T e ~ e
trifluoride etherate at room temperature.* The decomposition product formed in a quantitative ynela was the
miteila ida Aimar & tha anthants are A H PR P
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1. Thus, the monosubstituted nitronate 2 undergoes either spontaneous or Lewis acid catalyzed B-elimination
glvma the (‘m‘recnnndmc nitrile oxide 4 (F in Scheme 1), the (-amlvmad eaction beine much faster

2GR0 1) UG LRI VOIS UL 1asith.

Coordination of Lewis acid to the methoxyl oxygen of nitronate 2 would accelerate the 3-elimination of
the methoxyl moiety. However, we believe that, in the reactions of 2 with the magnesium alkoxides of
allylic alcohols 6, not nitrile oxide 4 but nitronate 2 is responsible for the formation of isoxazolines 9.

Reasons are that (1) the reaction with allyl substrate 6a (X = MgBr) produced isoxazolidine derivative 8a,
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and (2) the reaction of nitrile oxide 4 with 6b (X = MgBr) is not a high yield reaction. Lewis acidity of the
magnesium ion of the substrates 6 (X = MgBr) would be insufficient to mediate such a nitrile oxide
generation; the reactivity of magnesium alkoxides of allylic alcohols is faster than the rate of B-elimination.
This indicates that use of a weak Lewis acid catalyst would lead to effective Lewis acid catalysis in nitronate

cycioadditions.
3 s s 1 A ¢l o AF miteila avida gamaeatia . R e
Relation between the acidity of Lewis acid catalyst and the rate of nitrile oxide generation is now under
investigation.
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